asymptotic condition — asimptotinė sąlyga statusas T sritis fizika atitikmenys: angl. asymptotic condition vok. asymptotische Bedingung, f rus. асимптотическое условие, n pranc. condition asymptotique, f … Fizikos terminų žodynas
Cône asymptotique — En mathématiques, et plus précisément en analyse convexe, le cône asymptotique d un convexe fermé non vide d un espace vectoriel est l aspect qu il prend lorsqu on le voit d infiniment loin (la définition précise est donnée ci dessous) ; il… … Wikipédia en Français
Stabilité asymptotique — La stabilité asymptotique est une forme particulière de stabilité des systèmes dynamiques étudiés en automatique. Cette qualité est typiquement celle qui est souhaitée pour un système asservi. réponse impulsionelle de deux systèmes… … Wikipédia en Français
asimptotinė sąlyga — statusas T sritis fizika atitikmenys: angl. asymptotic condition vok. asymptotische Bedingung, f rus. асимптотическое условие, n pranc. condition asymptotique, f … Fizikos terminų žodynas
asymptotische Bedingung — asimptotinė sąlyga statusas T sritis fizika atitikmenys: angl. asymptotic condition vok. asymptotische Bedingung, f rus. асимптотическое условие, n pranc. condition asymptotique, f … Fizikos terminų žodynas
асимптотическое условие — asimptotinė sąlyga statusas T sritis fizika atitikmenys: angl. asymptotic condition vok. asymptotische Bedingung, f rus. асимптотическое условие, n pranc. condition asymptotique, f … Fizikos terminų žodynas
Flot (mathématiques) — Ce schéma représente le flot associé à l équation différentielle d un pendule. Les abscisses représentent la position et les ordonnées la vitesse. Le flot, coulée ou encore courant est, en mathématiques, un concept utilisée en géométrie… … Wikipédia en Français
SYSTÈMES DYNAMIQUES DIFFÉRENTIABLES — Sans doute née avec le mémoire que Poincaré écrivit en 1881 «sur les courbes définies par des équations différentielles», où l’étude quantitative (analytique) locale des équations différentielles dans le champ complexe est remplacée par leur… … Encyclopédie Universelle
DÉRIVÉES PARTIELLES (ÉQUATIONS AUX) - Équations non linéaires — L’étude des équations aux dérivées partielles non linéaires se trouve à l’interface de nombreux problèmes scientifiques. En effet, la plupart des phénomènes de la physique ou des sciences de l’ingénieur sont non linéaires et une modélisation par… … Encyclopédie Universelle
FORME — L’histoire du concept de forme et des théories de la forme est des plus singulières. Nous vivons dans un monde constitué de formes naturelles. Celles ci sont omniprésentes dans notre environnement et dans les représentations que nous nous en… … Encyclopédie Universelle